Convolutional Neural Network Feature Extraction Using Covariance Tensor Decomposition
نویسندگان
چکیده
منابع مشابه
Forged Signature Distinction Using Convolutional Neural Network for Feature Extraction
This paper proposes a dynamic verification scheme for finger-drawn signatures in smartphones. As a dynamic feature, the movement of a smartphone is recorded with accelerometer sensors in the smartphone, in addition to the moving coordinates of the signature. To extract high-level longitudinal and topological features, the proposed scheme uses a convolution neural network (CNN) for feature extra...
متن کاملTensor graph convolutional neural network
In this paper, we propose a novel tensor graph convolutional neural network (TGCNN) to conduct convolution on factorizable graphs, for which here two types of problems are focused, one is sequential dynamic graphs and the other is cross-attribute graphs. Especially, we propose a graph preserving layer to memorize salient nodes of those factorized subgraphs, i.e. cross graph convolution and grap...
متن کاملFeature Extraction Using an Unsupervised Neural Network
A novel unsupervised neural network for dimensionality reduction that seeks directions emphasizing multimodality is presented, and its connection to exploratory projection pursuit methods is discussed. This leads to a new statistical insight into the synaptic modification equations governing learning in Bienenstock, Cooper, and Munro (BCM) neurons (1982). The importance of a dimensionality redu...
متن کاملDouble-Star Detection Using Convolutional Neural Network in Atmospheric Turbulence
In this paper, we investigate the usage of machine learning in the detection and recognition of double stars. To do this, numerous images including one star and double stars are simulated. Then, 100 terms of Zernike expansion with random coefficients are considered as aberrations to impose on the aforementioned images. Also, a telescope with a specific aperture is simulated. In this work, two k...
متن کاملEMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2021
ISSN: 2169-3536
DOI: 10.1109/access.2021.3076033